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Abstract. We investigate the concurrence and Bell violation of the standard Werner state or Werner-like
states in the presence of collective dephasing. It is shown that the standard Werner state and certain
kinds of Werner-like states are robust against the collective dephasing, and some kinds of Werner-like
states is fragile and becomes completely disentangled in a finite-time. The threshold time of complete
disentanglement of the fragile Werner-like states is given. The influence of external driving field on the
finite-time disentanglement of the standard Werner state or Werner-like states is discussed. Furthermore,
we present a simple method to control the stationary state entanglement and Bell violation of two qubits.
Finally, we show that the theoretical calculations of fidelity based on the initial Werner state assumption
well agree with previous experimental results.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 03.67.-a Quantum information – 05.40.Ca
Noise

Quantum entanglement plays a crucial role in quantum
information processes [1]. Entanglement can exhibit the
nature of a nonlocal correlation between quantum sys-
tems that have no classical interpretation. However, real
quantum systems will unavoidably be influenced by sur-
rounding environments. The interaction between the en-
vironment and quantum systems of interest can lead to
decoherence. Certain kind of the decoherence is the collec-
tive dephasing, which occurs in the physical systems such
as trapped ions, quantum dots, or atoms inside a cavity.
Collective dephasing allows the existence of the so-called
decoherence-free subspace [2].

Recently, the Werner or Werner-like states [3–6] has
intrigued many interests for the applications in quan-
tum information processes. Lee and Kim have discussed
the entanglement teleportation via the Werner states [7].
Hiroshima and Ishizaka have studied the entanglement of
the so-called Werner derivative, which is the state trans-
formed by nonlocal unitary-local or nonlocal-operations
from a Werner state [8]. Miranowicz has examined the
Bell violation and entanglement of Werner states of two
qubits in independent decay channels [9]. The experi-
mental preparation and characterization of the Werner
states have also been reported. An experiment for prepar-
ing the Werner state via spontaneous parametric down-
conversion has been put forward [10]. Altepeter et al. have
experimentally produced the Werner state and applied it
in the ancilla-assisted process tomography [11]. Barbieri
et al. have presented a novel technique for generating and
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characterizing two-photon polarization Werner states [12],
which is based on the peculiar spatial characteristics of a
high brilliance source of entangled pairs.

The disentanglement of entangled states of qubits is a
very important issue for quantum information processes,
such as the solid state quantum computation. Yu and
Eberly have found that the time for decay of the qubit
entanglement can be significantly shorter than the time
for local dephasing of the individual qubits [13,14]. In
this paper, we investigate the entanglement and Bell vio-
lation of the standard Werner state or Werner-like states
in the presence of collective dephasing. The entanglement
quantified by the concurrence and Bell violation of the
collective dephasing Werner-like state are analyzed. We
find that the standard Werner state and certain kinds
of Werner-like states are robust against the collective de-
phasing, and some kinds of Werner-like states are fragile
and become completely disentangled in a finite-time. The
threshold time for the complete disappearance of the en-
tanglement of the fragile Werner-like states is obtained.
We also provide an explicit example to clarify how the
pure maximally entangled states of two qubits can be-
come separable in the finite time due to the joint action
of collective dephasing and the external driving fields.

Meanwhile, there have been several proposals for
controlling the entanglement of the qubits in the pres-
ence of dephasing or dissipation, such as quantum error-
correcting approach [15–17], quantum error-avoiding ap-
proach [18,19], and loop control strategies [20] etc. Here,
we present a possible way to preserve the entanglement
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of two qubits initially in the fragile entangled state under
the collective dephasing environment. It is shown that the
external local driving field with an appropriate finite ac-
tion time can effectively transform the fragile entangled
state into a robust entangled state.

The standard two-qubit Werner state is defined by [3]

ρW = r|Ψ−〉〈Ψ−| + 1 − r

4
I ⊗ I, (1)

where r ∈ [0, 1], and |Ψ−〉 is the singlet state of two qubits.
I is the identity operator of a single qubit. Recently, defi-
nition (1) is generalized to include the following states of
two qubits [4–6]

ρ′W = r|M〉〈M | + 1 − r

4
I ⊗ I, (2)

where |M〉 are any two-qubit maximally entangled states.
Both the Werner state (1) and the Werner-like state (2)
are very important in quantum information. The Werner
state (1) is highly symmetric and SU(2) ⊗ SU(2) invari-
ant [3,21].

The collective dephasing can be described by the mas-
ter equation [19]

∂ρ̂

∂t
=

γ

2
(2Ĵzρ̂Ĵz − Ĵ2

z ρ̂ − ρ̂Ĵ2
z ), (3)

where γ is the dephasing rate. Ĵz are the collective spin
operator defined by

Ĵz =
2∑

i=1

σ̂(i)
z /2, (4)

where σ̂z for each qubit is defined by σ̂z = |1〉〈1| − |0〉〈0|.
Firstly, it is obvious that the standard Werner state (1) is
completely decoupled from the collective dephasing. So in
the presence of collective dephasing, the state (1) belongs
to the decoherence-free subspace, and it maintain its en-
tanglement invariant. Then, we want to know how the col-
lective dephasing affects the Werner-like states defined by
equation (2). For simplicity, we only consider three states
defined by equation (2) in which the maximally entangled
states are the Bell triglet states. If two qubits are initially
in the Werner-like state

ρ′W = r|Ψ+〉〈Ψ+| + 1 − r

4
I ⊗ I, (5)

where |Ψ+〉 is one of the Bell states |Ψ+〉 =
√

2
2 (|10〉 +

|01〉), the collective dephasing does not change the form of
r|Ψ+〉〈Ψ+|+ 1−r

4 I⊗I. So both the standard Werner state
and the Werner-like state r|Ψ+〉〈Ψ+|+ 1−r

4 I⊗I belong to
the decoherence-free subspace of the collective dephasing.
They are robust states against the collective dephasing.
Are all of the Werner-like states robust states against the
collective dephasing? The answer is no. Now we consider
another Werner-like state

ρ±W = r|Φ±〉〈Φ±| + 1 − r

4
I ⊗ I, (6)

where |Φ±〉 is the Bell states |Φ±〉 =
√

2
2 (|11〉 ± |00〉). It is

assumed that the initial state of master equation (3) is ρ±W .
Then its time evolution density matrix can be expressed as

ρ±W (t) = re−2γt|Φ±〉〈Φ±| + 1 − r

4
I ⊗ I

+
r

2
(1 − e−2γt)|11〉〈11|+ r

2
(1 − e−2γt)|00〉〈00|. (7)

In order to quantify the degree of entanglement, we adopt
the concurrence C defined by Wooters [22]. The concur-
rence varies from C = 0 for an unentangled state to C = 1
for a maximally entangled state. For two qubits, in the
“Standard” eigenbasis: |1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉,
|4〉 ≡ |00〉, the concurrence may be calculated explicitly
from the following:

C = max{λ1 − λ2 − λ3 − λ4, 0}, (8)

where the λi(i = 1, 2, 3, 4) are the square roots of the
eigenvalues in decreasing order of magnitude of the “spin-
flipped” density matrix operator R = ρs(σy ⊗ σy)ρ∗s(σ

y ⊗
σy), where the asterisk indicates complex conjugation.
The concurrence related to the density matrix ρ±W (t) can
be written as

C(t) = max
(

0,
r − 1

2
+ re−2γt

)
. (9)

From equation (9), we can know that, different from the
standard Werner state described by equation (1) and
r|Ψ+〉〈Ψ+|+ 1−r

4 I ⊗ I, the Werner-like state r|Φ±〉〈Φ±|+
1−r
4 I ⊗ I rapidly loses its entanglement in the presence of

collective dephasing. The threshold time tc beyond which
the entanglement of two qubits completely disappears can
be obtained as

tc = − 1
2γ

ln
[
1 − r

2r

]
. (10)

Being similar to the results in reference [23], the Werner-
like state described by equation (5) is completely disen-
tangled in a finite time due to the collective dephasing if
the initial parameter r �= 1. It is also interesting to inves-
tigate how the collective dephasing affects the mixedness
defined by M = 4

3 (1 − Trρ2). The mixedness of the time
evolution density matrix (6) can be calculated as

M(t) = 1 − r2

3
− 2r2

3
e−4γt. (11)

When γt → ∞, the final mixedness of the state in equa-
tion (6) equals to 1 − r2

3 . It is shown that the state
r|Φ±〉〈Φ±| + 1−r

4 I ⊗ I loses its purity in the collective
dephasing. The larger the parameter r, the smaller the
final mixedness.

In the following, we attempt to discuss how the col-
lective dephasing affects the Bell violation of the Werner-
like states. Bell violation is not an entanglement measure.
Those states violating the Bell inequality must be nonsep-
arable. However, certain kinds of entangled states may not
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violate the Bell inequality. The most commonly discussed
Bell inequality is the CHSH inequality [24,25]. The CHSH
operator reads

B̂ = �a · �σ ⊗ (�b + �b′) · �σ + �a′ · �σ ⊗ (�b − �b′) · �σ, (12)

where �a, �a′,�b, �b′ are unit vectors. In the above notation,
the Bell inequality reads

|〈B̂〉| ≤ 2. (13)

The maximal amount of Bell violation of a state ρ is given
by [26]

B = 2
√

λ + λ̃, (14)

where λ and λ̃ are two largest eigenvalues of T †
ρTρ.

The matrix Tρ is determined completely by the correla-
tion functions being a 3 × 3 matrix whose elements are
(Tρ)nm = Tr(ρσn ⊗ σm). Here, σ1 ≡ σx, σ2 ≡ σy, and
σ3 ≡ σz denote the usual Pauli matrices. We call the quan-
tity B the maximal violation measure, which indicates the
Bell violation when B > 2 and the maximal violation when
B = 2

√
2. For the density matrix ρ±W (t) in equation (6),

λ + λ̃ can be written as follows

λ + λ̃ = r2
(
1 + e−4γt

)
. (15)

The threshold time tbc beyond which the collective dephas-
ing Werner-like state does not violate the Bell-CHSH in-
equality can be given by

tbc = − 1
4γ

ln
(

1 − r2

r2

)
. (16)

Equations (14, 15) show that, if r �= 1, i.e. the initial
state is not a maximally entangled state, the dephasing
Werner-like state in equation (7) rapidly loses its nonlo-
cality in a finite time. The smaller the initial entangle-
ment, the more rapidly the nonlocality completely disap-
pears. In Figure 1, the threshold time tc and tbc concerning
the complete disentanglement and the disappearance of
nonlocality of the state (7) respectively, have been plot-
ted as the function of the parameter r. It implies that
both the entanglement and nonlocality are completely de-
stroyed in a finite time if the initial state is not pure. While
the collective dephasing can not completely destroy non-
locality and entanglement of the pure Bell states |Φ±〉
in the finite time. According to two threshold times, we
can classify the Werner-like state (6) by making use of
the parameter r or the initial mixedness. If r = 0, the
state (6) reduces to the maximally mixed state. In the
range of 0 < r ≤ 1

3 , the states in equation (6) are sep-
arable. In the range of 1

3 < r ≤
√

2
2 , they are entangled

but not nonlocal. In the range of
√

2
2 < r < 1, they are

inseparable and nonlocal, and both their nonlocality and
entanglement can be completely destroyed by the collec-
tive dephasing. Recently, Yu and Eberly have shown a
novel phenomenon that, under the influence of pure vac-
uum noise two entangled qubits become completely dis-
entangled in a finite-time [23]. In a specific example they

Fig. 1. The threshold time γtc and γtb
c of the concurrence and

the maximal Bell violation respectively, are plotted as the func-
tion of the parameter r for the collective dephasing Werner-like
states in equation (7); (solid line) γtc in equation (10); (dash
line) γtb

c in equation (16). It is shown that both γtc and γtb
c

increase with r.

have found the time to be given by ln(1 +
√

2
2 ) times the

usual spontaneous lifetime. Here, we have obtained a sim-
ilar result that in the presence of collective dephasing, two
initial mixed entangled qubits become completely disen-
tangled in a finite-time. It is conjectured that, in this case,
the initial mixedness is an essential fact whether two en-
tangled qubits become completely disentangled in a finite-
time or not. In fact, previous work concerning the inter-
action between a initial mixed qubit and the thermal field
in the presence of phase decoherence have revealed some
analogical results [27].

It is also very interesting to investigate how an external
driving field affects the complete disentanglement time in
this situation. If the external driving fields are taken into
account, the master equation (3) should be replaced by

∂ρ̂

∂t
= − i

2

[
Ω1σ̂

(1)
x + Ω2σ̂

(2)
x , ρ̂

]
+

γ

2
(2Ĵzρ̂Ĵz − Ĵ2

z ρ̂ − ρ̂Ĵ2
z ),

(17)
where Ωi (i = 1, 2) are the intensity of the external
driving field acted on the ith qubit. σ̂x for each qubit
are defined by σ̂x = |1〉〈0| + |0〉〈1|. In the case with
Ω1 = Ω2 = Ω, the standard Werner state is still decoupled
from the above master equation, while other Werner-like
states lose their entanglement. In order to know whether
r|Ψ+〉〈Ψ+| + 1−r

4 I ⊗ I and r|Φ±〉〈Φ±| + 1−r
4 I ⊗ I can be

completely disentangled in a finite time or not, it is suf-
ficient to verify Bell states |Ψ+〉 and |Φ±〉 are completely
disentangled in their evolutions governed by equation (17).
In Figure 2, the dynamical behaviors of concurrence of two
qubits initially in Bell triplet states governed by equa-
tion (17) are displayed. It is shown that all of Bell triplet
states are completely disentangled in a finite time, which
imply all of the Werner-like states defined by equations (5)
and (7) are finite-time disentangled in the joint action of
the collective dephasing and external driving fields. From
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Fig. 2. The dynamical behaviors of concurrence of two qubits
initially in Bell triplet states governed by equation (17) are
displayed as the function of the dephasing time γt for different
values of Ω1 = Ω2 = Ω; (solid line) Ω = γ, (dash line) Ω = 2γ,
(dot line) Ω = 3γ. (a) Two qubits are initially in |Φ−〉; (b) two
qubits are initially in |Φ+〉; (c) two qubits are initially in |Ψ+〉.
It is shown that all of Bell triplet states become separable in
different finite times in the joint action of collective dephasing
and driving fields. In the case without the driving fields, Bell
triplet states can not become separable in finite time.

Fig. 3. The dynamical behaviors of concurrence of two qubits
initially in four Bell states governed by the master equa-
tion (17) are displayed as the function of the dephasing time γt
with Ω1 = γ and Ω2 = 0. (Dash line) Two qubits are initially in
|Φ±〉; (dot line) two qubits are initially in |Ψ±〉; (solid line) for
comparison, we display the asymptotic disentanglement of two
qubits initially in |Φ±〉 in the presence of the pure collective
dephasing without any external driving fields.

Figure 2, it can be observed that |Φ−〉 most rapidly loses
its entanglement among all of Bell triplet states. In the
case with Ω1 �= Ω2, the Bell singlet state is no longer
decoupled from the equation (17). In Figure 3, we show
that four Bell states become complete disentanglement in
the finite time in the situation with Ω1 = γ and Ω2 = 0.
The partially driving field acting on the qubit 1 destroys
the symmetry of the pure collective dephasing and forces
the Bell singlet state out of the decoherence-free subspace.
Nevertheless, |Ψ±〉 are more robust than |Φ±〉 in this case,
and the threshold time corresponding to the complete dis-
entanglement of two qubits initially in |Ψ±〉 is about twice
as large as the one corresponding to the complete disen-
tanglement of two qubits initially in |Φ±〉.

In what follows, we briefly discuss a possible scheme to
prevent the fragile entangled states from complete disen-
tanglement under the action of collective dephasing. We
assume that only one of two qubits is driven by a time-
dependent external field. For simplicity, the time depen-
dence of the external driving field is suggested to be the
form of the unit step function. The dynamics of two qubits
can be described by the following master equation

∂ρ̂

∂t
= − i

2

[
ζ1(t)σ̂(1)

x , ρ̂
]
+

γ

2

(
2Ĵzρ̂Ĵz − Ĵ2

z ρ̂ − ρ̂Ĵ2
z

)
, (18)

where ζ1(t) = ζ1Θ(T − t) is the intensity of the time-
dependent external driving field acted on the qubit 1, and
Θ(x) is the unit step function and equals one for x ≥ 0
and equals zero for x < 0. In previous experimental verifi-
cation of the decoherence-free subspace [28], the external
driving field and the collective dephasing are not simulta-
neously acted on the qubits. It is obvious that the local
external driving field ζ1(t)σ̂

(1)
x can interconvert the Bell
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Fig. 4. The stationary state concurrence Cs (a) and the sta-
tionary state Bell violation |B(s)|max (b) of two qubits initially
in the Bell states |Φ+〉 governed by the master equation (17)
are displayed as the function of the scaled action time γT with
ζ1/γ = 41.25. In this case, when γT > 2, there is not any
stationary state entanglement between two qubits.

states without the simultaneous presence of collective de-
phasing. Nevertheless, it is desirable to determine the in-
fluence of the variation of T on the eventual stationary
state entanglement when the driving field and the collec-
tive dephasing are simultaneously acted on the qubits in
some realistic situations. Our numerical calculations show
that the external field with an appropriate value of T can
transform the initial fragile entangled state |Φ+〉 into a
stationary entangled state even if the collective dephas-
ing is always presence. In Figure 4, the stationary state
concurrence Cs and the stationary state Bell violation
|B(s)|max of two qubits are plotted as the function of the
parameter γT . It is shown that, if only the value of ζ1/γ
is large enough, one can maintain the entanglement and
Bell violation of two qubits initially in a very fragile en-
tangled state by making use of the local driving field with
an appropriate action time T . We can see that the sta-
tionary state entanglement firstly increases with γT , and

achieves a local maximal value, then decreases with γT .
Similar behaviors are repeated again when the scaled ac-
tion time γT is further enlarged. The stationary state Bell
violation also oscillates with γT . The above calculations
show one can effectively transform the fragile entangled
state into a robust entangled state. This is meaningful
and very important in many areas of quantum informa-
tion processes.

Finally, we attempt to discuss the theoretical results
about the fragile and robust Werner state in collec-
tive dephasing by comparing them with previous exper-
imental results. In reference [28], Kwiat et al. have pre-
sented the experimental verification of decoherence-free
subspace in the system of polarized photons. For inves-
tigating the influence of collective dephasing on the ini-
tial state, one can adopt the general fidelity F (ρi, ρf) ≡
[Tr(

√
ρiρf

√
ρi)1/2]2 [29], where ρi is the initial state and

ρf the final state. The fidelity between the initial Werner-
like state ρ±W in equation (6) and the corresponding de-
phasing state ρ±W (t) in equation (7) can be calculated as

FW =
1
16

[2(1 − r) +
√

(1 + 3r)(1 + r + 2re−2γt)

+
√

(1 − r)(1 + r(1 − 2e−2γt))]2, (19)

which decreases with r and t. In this case, the minimal
value of FW is 0.5 at r = 1 and t → ∞. The collective de-
phasing in the experiment of Kwiat et al. can be described
by the following master equation which is equivalent to
equation (3) under the local unitary transformation

∂ρ̂

∂t
=

γ

2
(2Ĵθρ̂Ĵθ − Ĵ2

θ ρ̂ − ρ̂Ĵ2
θ ), (20)

where Ĵθ are the collective spin operator defined by

Ĵθ =
2∑

i=1

σ̂
(i)
θ /2, (21)

where σ̂θ for each qubit is defined by σ̂θ = cos 2θσ̂z +
sin 2θσ̂x. Throughout the following calculations, we choose
θ = 17◦ for representing the realistic situation in ref-
erence [28]. The fidelity between the initial Werner-like
states and corresponding stationary state of equation (20)
for three different initial states has been calculated and
the results are depicted in Figure 5. It was found that the
fidelities decrease with r and the theoretical results excel-
lently agree with the experimental data in reference [28].
By comparing two Table 1 in present paper and in refer-
ence [28], it may be interesting that the initial states in [28]
look like the Werner or Werner-like states with very high
purity. In Figure 6, the evolution of fidelities are inves-
tigated for three different initial states. It is shown that
the fidelity decreases with dephasing time and eventually
stays at a fixed value, which implies that these chosen
initial states are out of the decoherence-free subspace of
equation (20). It is shown that evolving fidelity of the ini-
tial state 0.99|Φ−〉〈Φ−| + 1

400 I ⊗ I is larger than the one
of 0.99|Φ+〉〈Φ+| + 1

400I ⊗ I in short time.
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Fig. 5. The fidelity F ≡ [Tr(
√

ρiρf
√

ρi)
1/2]2 for three kinds

of initial states and their corresponding complete dephasing
states are plotted as the function of the parameter r. (Solid
line) ρi = ρ+

W = r|Φ+〉〈Φ+|+ 1−r
4

I ⊗ I ; (dash line) ρi = ρ−
W =

r|Φ−〉〈Φ−| + 1−r
4

I ⊗ I ; (dot line) ρi = ρ′
W = r|Ψ+〉〈Ψ+| +

1−r
4

I ⊗ I . It is shown that F (ρ′
W ) > F (ρ+

W ) > F (ρ−
W ) for any

non-zero values of r, where we have simplified the expression
F (ρi, ρf ) as F (ρi). This simplification has also been adopted
in Table 1.

Table 1. The fidelities Fi (i = 1, 2, 3, 4) of the initial states ρ+
W

(in Eq. (6)), ρ−
W (in Eq. (6)), ρ′

W (in Eq. (5)), ρW (in Eq. (1))
and their corresponding stationary states of equation (20) in
order are listed for different values of r. F1 ≡ F (ρ+

W ); F2 ≡
F (ρ−

W ); F3 ≡ F (ρ′
W ); F4 ≡ F (ρW ). We can see that present

theoretical calculations based on equation (20) and the initial
Werner-like state assumption well agree with the experimental
data in Table 1 of reference [28].

r 1 0.99 0.98 0.97
F1 0.500 0.552 0.575 0.592
F2 0.334 0.403 0.434 0.457
F3 0.521 0.582 0.606 0.625
F4 1.000 1.000 1.000 1.000

Fig. 6. The fidelities for three kinds of initial states and their
corresponding evolving states governed by equation (20) are
plotted as the function of γt. The initial Werner-like states
with r = 0.99 are chosen for calculating all of three curves.

In summary, we investigate the concurrence and Bell
violation of the standard Werner state or Werner-like
states in the presence of collective dephasing. By mak-
ing use of the analytical expressions of the concurrence
and Bell violation obtained in the present paper, we
find that the standard Werner state and certain kinds
of Werner-like states are robust against the collective de-
phasing, and some kinds of Werner-like states is fragile
and becomes completely disentangled in a finite-time. The
threshold time of complete disentanglement of the fragile
Werner-like states is analyzed. We conjecture that the ini-
tial mixedness is an important fact to determine whether
two entangled qubits become completely disentangled in a
finite-time or not in the pure collective dephasing. More-
over, the threshold time concerning the complete disap-
pearance of the Bell violation of some kinds of fragile
Werner-like states is also obtained. Furthermore, we in-
vestigate how an external driving field affects the com-
pletely disentanglement time and clarify that the pure
maximally entangled states of two qubits can become sep-
arable in the finite time in this situation. Since the stan-
dard Werner state or Werner-like states play a special role
in some quantum information processes, such as quantum
teleportation, our results may have potential applications
in quantum teleportation [30,31] or other remote quantum
information processes.

We also discuss the possible way to transform the frag-
ile entangled state into the robust entangled state in the
collective dephasing environment. It is shown that a lo-
cal external driving field with an appropriate finite action
time can effectively maintain both the entanglement and
Bell violation of two qubits even if the collective dephasing
is presence from beginning to end.

Recently, the quantum information processes in the
presence of the collective dephasing have intrigued much
attention [13,14,32–34]. Khodjasteh and Lidar have in-
vestigated the universal fault-tolerant quantum computa-
tion in the presence of spontaneous emission and collective
dephasing [32]. Hill and Goan have studied the effect of
dephasing on proposed quantum gates for the solid-state
Kane quantum computing architecture [33]. In the future
work, it may be very interesting to apply the present re-
sults to discuss the influence of collective dephasing on
gate fidelity of remote quantum computation.

Finally, we also compare the theoretical results about
the fidelity of the initial Werner-like state in the presence
of collective dephasing with recent experimental data of
Kwiat et al. [28]. It is shown that they are consistent with
each other.

This project was supported by the National Natural Science
Foundation of China (Project No. 10174066).

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, 2000)



S.-B. Li and J.-B. Xu: Robust and fragile Werner states in the collective dephasing 383

2. P. Zanardi, Phys. Rev. A 63, 012301 (2001), and references
therein

3. R.F. Werner, Phys. Rev. A 40, 4277 (1989)
4. W.J. Munro, D.F.V. James, A.G. White, P.G. Kwiat,

Phys. Rev. A 64, 030302(R) (2001)
5. S. Ghosh et al., Phys. Rev. A 64, 044301 (2001)
6. T.C. Wei et al., Phys. Rev. A 67, 022110 (2003)
7. J. Lee, M.S. Kim, Phys. Rev. Lett. 84, 4236 (2000)
8. T. Hiroshima, S. Ishizaka, Phys. Rev. A 62, 044302 (2000)
9. A. Miranowicz, Phys. Lett. A 327, 272 (2004)

10. Y.S. Zhang et al., Phys. Rev. A 66, 062315 (2002)
11. J.B. Altepeter et al., Phys. Rev. Lett. 90, 193601 (2003)
12. M. Barbieri et al., Phys. Rev. Lett. 92, 177901 (2004)
13. T. Yu, J.H. Eberly, Phys. Rev. B 66, 193306 (2002)
14. T. Yu, J.H. Eberly, Phys. Rev. B 68, 165322 (2003)
15. P.W. Shor, Phys. Rev. A 52, 2493 (1995)
16. A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)
17. E. Knill, R. Laflamme, Phys. Rev. A 55, 900 (1997)
18. L.-M. Duan, G.-C. Guo, Phys. Rev. Lett. 79, 1953 (1997);

P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997)
19. D.A. Lidar, I.L. Chuang, K.B. Whaley, Phys. Rev. Lett.

81, 2594 (1998)

20. H.M. Wiseman, G.J. Milburn, Phys. Rev. Lett. 70, 548
(1993)

21. C.H. Bennett et al., Phys. Rev. Lett 76, 722 (1996)
22. W.K. Wootters, Phys. Rev. Lett 80, 2245 (1998)
23. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)
24. J.S. Bell, Physics (N.Y.) 1, 195 (1965)
25. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys.

Rev. Lett. 23, 880 (1969)
26. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A

200, 340 (1995)
27. S.B. Li, J.B. Xu, Phys. Lett. A 313, 175 (2003)
28. P.G. Kwiat, A.J. Berglund, J.B. Altepeter, A.G. White,

Science 290, 498 (2000)
29. R. Jozsa, J. Mod. Opt. 41, 2315 (1994)
30. C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)
31. D. Bouwmester et al., Nature 390, 575 (1997)
32. K. Khodjasteh, D.A. Lidar, Phys. Rev. Lett. 89, 197904

(2002)
33. C.D. Hill, H.S. Goan, Phys. Rev. A 70, 022310 (2004)
34. J.E. Ollerenshaw, D.A. Lidar, L.E. Kay, Phys. Rev. Lett.

91, 217904 (2003)


